JEE MAIN - Mathematics (2021 - 31st August Evening Shift - No. 19)

The number of elements in the set $$\left\{ {A = \left( {\matrix{ a & b \cr 0 & d \cr } } \right):a,b,d \in \{ - 1,0,1\} \,and\,{{(I - A)}^3} = I - {A^3}} \right\}$$, where I is 2 $$\times$$ 2 identity matrix, is :
Answer
8

Explanation

$${(I - A)^3} = {I^3} - {A^3} - 3A(I - A) = I - {A^3}$$

$$ \Rightarrow 3A(I - A) = 0$$ or $${A^2} = A$$

$$ \Rightarrow \left[ {\matrix{ {{a^2}} & {ab + bd} \cr 0 & {{d^2}} \cr } } \right] = \left[ {\matrix{ a & b \cr 0 & d \cr } } \right]$$

$$ \Rightarrow {a^2} = a,b(a + d - 1) = 0,{d^2} = d$$

If b $$\ne$$ 0, a + d = 1 $$\Rightarrow$$ 4 ways

If b = 0, a = 0, 1 & d = 0, 1 $$\Rightarrow$$ 4 ways

$$\Rightarrow$$ Total 8 matrices

Comments (0)

Advertisement