JEE MAIN - Mathematics (2021 - 27th July Morning Shift - No. 4)

Let C be the set of all complex numbers. Let

$${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $$

$${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $$ and

$${S_3} = \{ z \in C||z - \overline z | \ge 8\} $$.

Then the number of elements in $${S_1} \cap {S_2} \cap {S_3}$$ is equal to :
1
0
2
Infinite

Explanation

$${S_1}:|z - 3 - 2i{|^2} = 8$$

$$|z - 3 - 2i| = 2\sqrt 2 $$

$${(x - 3)^2} + {(y - 2)^2} = {(2\sqrt 2 )^2}$$

$${S_2}:x \ge 5$$

$${S_3}:|z - \overline z | \ge 8$$

$$|2iy| \ge 8$$

$$2|y| \ge 8$$

$$\therefore$$ $$y \ge 4$$, $$y \le - 4$$

JEE Main 2021 (Online) 27th July Morning Shift Mathematics - Complex Numbers Question 94 English Explanation

$$n\left( {{S_1} \cap {S_2} \cap {S_3}} \right) = 1$$

Comments (0)

Advertisement