JEE MAIN - Mathematics (2021 - 27th July Evening Shift - No. 9)
The value of
$$\mathop {\lim }\limits_{x \to 0} \left( {{x \over {\root 8 \of {1 - \sin x} - \root 8 \of {1 + \sin x} }}} \right)$$ is equal to :
$$\mathop {\lim }\limits_{x \to 0} \left( {{x \over {\root 8 \of {1 - \sin x} - \root 8 \of {1 + \sin x} }}} \right)$$ is equal to :
0
4
$$-$$4
$$-$$1
Explanation
$$\mathop {\lim }\limits_{x \to 0} \left( {{x \over {\root 8 \of {1 - \sin x} - \root 8 \of {1 + \sin x} }}} \right)$$
= $$\mathop {\lim }\limits_{x \to 0} {x \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \right]} \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ 2 \right]\left[ 2 \right]} \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ 2 \right]\left[ 2 \right]\left[ 2 \right]} \over {\left[ {\left( {1 - \sin x} \right) - \left( {1 + \sin x} \right)} \right]}}$$
$$ = \mathop {\lim }\limits_{x \to 0} \left( { - {1 \over 2}} \right)(2)(2)(2)$$
= -4
$$\because$$ $$\left\{ {\mathop {\lim }\limits_{x \to 0} {{\sin x} \over x} = 1} \right\}$$
= $$\mathop {\lim }\limits_{x \to 0} {x \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 8}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 8}}}} \right]} \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 4}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 4}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ 2 \right]\left[ 2 \right]} \over {\left[ {{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} - {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}} \right]}} \times \left[ {{{{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}} \over {{{\left( {1 - \sin x} \right)}^{{1 \over 2}}} + {{\left( {1 + \sin x} \right)}^{{1 \over 2}}}}}} \right]$$
= $$\mathop {\lim }\limits_{x \to 0} {{x\left[ 2 \right]\left[ 2 \right]\left[ 2 \right]} \over {\left[ {\left( {1 - \sin x} \right) - \left( {1 + \sin x} \right)} \right]}}$$
$$ = \mathop {\lim }\limits_{x \to 0} \left( { - {1 \over 2}} \right)(2)(2)(2)$$
= -4
$$\because$$ $$\left\{ {\mathop {\lim }\limits_{x \to 0} {{\sin x} \over x} = 1} \right\}$$
Comments (0)
