JEE MAIN - Mathematics (2021 - 27th July Evening Shift - No. 7)

The area of the region bounded by y $$-$$ x = 2 and x2 = y is equal to :
$${{16} \over 3}$$
$${{2} \over 3}$$
$${{9} \over 2}$$
$${{4} \over 3}$$

Explanation

JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Area Under The Curves Question 87 English Explanation

y $$-$$ x = 2, x2 = y

Now, x2 = 2 + x

$$\Rightarrow$$ x2 $$-$$ x $$-$$ 2 = 0

$$\Rightarrow$$ (x + 1)(x $$-$$ 2) = 0

Area = $$\int\limits_{ - 1}^2 {(2 + x - {x^2})} $$

$$ = \left| {2x + {{{x^2}} \over 2} - {{{x^3}} \over 3}} \right|_{ - 1}^2$$

$$ = \left( {4 + 2 - {8 \over 3}} \right) - \left( { - 2 + {1 \over 2} + {1 \over 3}} \right)$$

$$ = 6 - 3 + 2 - {1 \over 2} = {9 \over 2}$$

Comments (0)

Advertisement