JEE MAIN - Mathematics (2021 - 27th July Evening Shift - No. 7)
The area of the region bounded by y $$-$$ x = 2 and x2 = y is equal to :
$${{16} \over 3}$$
$${{2} \over 3}$$
$${{9} \over 2}$$
$${{4} \over 3}$$
Explanation
_27th_July_Evening_Shift_en_7_1.png)
y $$-$$ x = 2, x2 = y
Now, x2 = 2 + x
$$\Rightarrow$$ x2 $$-$$ x $$-$$ 2 = 0
$$\Rightarrow$$ (x + 1)(x $$-$$ 2) = 0
Area = $$\int\limits_{ - 1}^2 {(2 + x - {x^2})} $$
$$ = \left| {2x + {{{x^2}} \over 2} - {{{x^3}} \over 3}} \right|_{ - 1}^2$$
$$ = \left( {4 + 2 - {8 \over 3}} \right) - \left( { - 2 + {1 \over 2} + {1 \over 3}} \right)$$
$$ = 6 - 3 + 2 - {1 \over 2} = {9 \over 2}$$
Comments (0)
