JEE MAIN - Mathematics (2021 - 27th August Morning Shift - No. 8)

When a certain biased die is rolled, a particular face occurs with probability $${1 \over 6} - x$$ and its opposite face occurs with probability $${1 \over 6} + x$$. All other faces occur with probability $${1 \over 6}$$. Note that opposite faces sum to 7 in any die. If 0 < x < $${1 \over 6}$$, and the probability of obtaining total sum = 7, when such a die is rolled twice, is $${13 \over 96}$$, then the value of x is :
$${1 \over 16}$$
$${1 \over 8}$$
$${1 \over 9}$$
$${1 \over 12}$$

Explanation

Probability of obtaining total sum 7 = probability of getting opposite faces.

Probability of getting opposite faces

$$ = 2\left[ {\left( {{1 \over 6} - x} \right)\left( {{1 \over 6} + x} \right) + {1 \over 6} \times {1 \over 6} + {1 \over 6} \times {1 \over 6}} \right]$$

$$ \Rightarrow 2\left[ {\left( {{1 \over 6} - x} \right)\left( {{1 \over 6} + x} \right) + {1 \over 6} \times {1 \over 6} + {1 \over 6} \times {1 \over 6}} \right] = {{13} \over {96}}$$ (given)

$$ \Rightarrow $$ $$x = {1 \over 8}$$

Comments (0)

Advertisement