JEE MAIN - Mathematics (2021 - 27th August Evening Shift - No. 10)

The area of the region bounded by the parabola (y $$-$$ 2)2 = (x $$-$$ 1), the tangent to it at the point whose ordinate is 3 and the x-axis is :
9
10
4
6

Explanation

y = 3 $$\Rightarrow$$ x = 2

Point is (2, 3)

Diff. w.r.t x

2 (y $$-$$ 2) y' = 1

$$\Rightarrow$$ $$y' = {1 \over {2(y - 2)}}$$

$$ \Rightarrow y{'_{(2,3)}} = {1 \over 2}$$

$$ \Rightarrow {{y - 3} \over {x - 2}} = {1 \over 2} \Rightarrow x - 2y + 4 = 0$$

Area $$ = \int\limits_0^3 {\left( {{{(y - 2)}^2} + 1 - (2y - 4)} \right)} \,dy$$

= 9 sq. units

Comments (0)

Advertisement