JEE MAIN - Mathematics (2021 - 26th February Morning Shift - No. 7)

The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} } $$, where [ x ] is the greatest integer $$ \le $$ x, is :
100e
100(e $$-$$ 1)
100(1 + e)
100(1 $$-$$ e)

Explanation

$$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}} dx} $$

Here, $$n - 1 \le x < n$$

$$ \therefore $$ $$[x] = n - 1$$

$$ \therefore $$ $$\int\limits_{n - 1}^n {{e^{x - (n - 1)}}} dx$$

$$ = \left[ {{e^{x - (n - 1)}}} \right]_{n - 1}^n$$

$$ = {e^1} - {e^0}$$

$$ = e - 1$$

Now, $$\sum\limits_{n = 1}^{100} {(e - 1) = 100(e - 1)} $$

Comments (0)

Advertisement