JEE MAIN - Mathematics (2021 - 26th February Morning Shift - No. 4)
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
$$2\pi $$
$${\pi \over 2}$$
$$4\pi $$
$${\pi \over 4}$$
Explanation
Let $$I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ .... (1)
Replace x with $$-$$x,
$$ \therefore $$ $$I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x} \over {1 + {1 \over {{3^x}}}}}} $$ .... (2)
Adding (1) and (2), we get,
$$2I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x + {3^x}{{\cos }^2}x} \over {1 + {3^x}}}} dx$$
$$ = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x(1 + {3^x})} \over {1 + {3^x}}}dx} $$
$$ = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\cos }^2}x} \,dx$$
[$${{{\cos }^2}x}$$ is a even function as $$f(x) = f( - x)$$ for $${\cos ^2}x $$]
$$= 2\int\limits_0^{{\pi \over 2}} {{{\cos }^2}x} \,dx$$
$$ = 2\int\limits_0^{{\pi \over 2}} {\left( {{{1 + \cos 2x} \over 2}} \right)} \,dx$$
$$ \Rightarrow I = {1 \over 2}\int\limits_0^{{\pi \over 2}} {(1 + \cos 2x)} \,dx$$
$$ = {1 \over 2}\left[ {x + \sin 2x} \right]_0^{{\pi \over 2}}$$
$$ = {1 \over 2}\left[ {{\pi \over 2} - 0} \right]$$
$$ = {\pi \over 4}$$
Replace x with $$-$$x,
$$ \therefore $$ $$I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x} \over {1 + {1 \over {{3^x}}}}}} $$ .... (2)
Adding (1) and (2), we get,
$$2I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x + {3^x}{{\cos }^2}x} \over {1 + {3^x}}}} dx$$
$$ = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{{{\cos }^2}x(1 + {3^x})} \over {1 + {3^x}}}dx} $$
$$ = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\cos }^2}x} \,dx$$
[$${{{\cos }^2}x}$$ is a even function as $$f(x) = f( - x)$$ for $${\cos ^2}x $$]
$$= 2\int\limits_0^{{\pi \over 2}} {{{\cos }^2}x} \,dx$$
$$ = 2\int\limits_0^{{\pi \over 2}} {\left( {{{1 + \cos 2x} \over 2}} \right)} \,dx$$
$$ \Rightarrow I = {1 \over 2}\int\limits_0^{{\pi \over 2}} {(1 + \cos 2x)} \,dx$$
$$ = {1 \over 2}\left[ {x + \sin 2x} \right]_0^{{\pi \over 2}}$$
$$ = {1 \over 2}\left[ {{\pi \over 2} - 0} \right]$$
$$ = {\pi \over 4}$$
Comments (0)
