JEE MAIN - Mathematics (2021 - 26th February Morning Shift - No. 20)
If y = y(x) is the solution of the equation
$${e^{\sin y}}\cos y{{dy} \over {dx}} + {e^{\sin y}}\cos x = \cos x$$, y(0) = 0; then
$$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$ is equal to ____________.
$${e^{\sin y}}\cos y{{dy} \over {dx}} + {e^{\sin y}}\cos x = \cos x$$, y(0) = 0; then
$$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$ is equal to ____________.
Answer
1
Explanation
esin y cos y$${{dy} \over {dx}}$$ + esin y cos x = cos x
Put esin y = t
esin y $$\times$$ cos y$${{dy} \over {dx}}$$ = $${{dt} \over {dx}}$$
$$ \Rightarrow $$ $${{dt} \over {dx}}$$ + t cos x = cos x
I. F. = $${e^{\int {\cos x\,dx} }} = {e^{\sin x}}$$
Solution of differential equation :
$$t.{e^{\sin x}} = \int {{e^{\sin x}}.\cos x\,dx} $$
$${e^{\sin y}}.{e^{\sin x}} = {e^{\sin x}} + c$$
at x = 0, y = 0
1 = 1 + c $$ \Rightarrow $$ c = 0
$$ \therefore $$ esin x + sin y = esin x
$$ \Rightarrow $$ sin x + sin y = sin x
$$ \Rightarrow $$ sin y = 0 $$ \Rightarrow $$ y = 0
$$ \Rightarrow y\left( {{\pi \over 6}} \right) = 0,y\left( {{\pi \over 3}} \right) = 0,y\left( {{\pi \over 4}} \right) = 0$$
$$ \therefore $$ $$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$
= 1 + 0 + 0 + 0 = 1
Put esin y = t
esin y $$\times$$ cos y$${{dy} \over {dx}}$$ = $${{dt} \over {dx}}$$
$$ \Rightarrow $$ $${{dt} \over {dx}}$$ + t cos x = cos x
I. F. = $${e^{\int {\cos x\,dx} }} = {e^{\sin x}}$$
Solution of differential equation :
$$t.{e^{\sin x}} = \int {{e^{\sin x}}.\cos x\,dx} $$
$${e^{\sin y}}.{e^{\sin x}} = {e^{\sin x}} + c$$
at x = 0, y = 0
1 = 1 + c $$ \Rightarrow $$ c = 0
$$ \therefore $$ esin x + sin y = esin x
$$ \Rightarrow $$ sin x + sin y = sin x
$$ \Rightarrow $$ sin y = 0 $$ \Rightarrow $$ y = 0
$$ \Rightarrow y\left( {{\pi \over 6}} \right) = 0,y\left( {{\pi \over 3}} \right) = 0,y\left( {{\pi \over 4}} \right) = 0$$
$$ \therefore $$ $$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$
= 1 + 0 + 0 + 0 = 1
Comments (0)
