JEE MAIN - Mathematics (2021 - 26th February Evening Shift - No. 3)

Consider the following system of equations :

x + 2y $$-$$ 3z = a

2x + 6y $$-$$ 11z = b

x $$-$$ 2y + 7z = c,

where a, b and c are real constants. Then the system of equations :
has no solution for all a, b and c
has a unique solution when 5a = 2b + c
has infinite number of solutions when 5a = 2b + c
has a unique solution for all a, b and c

Explanation

$$D = \left| {\matrix{ 1 & 2 & { - 3} \cr 2 & 6 & { - 11} \cr 1 & { - 2} & 7 \cr } } \right|$$

= 20 $$-$$ 2(25) $$-$$3($$-$$10)

= 20 $$-$$ 50 + 30 = 0

$${D_1} = \left| {\matrix{ a & 2 & { - 3} \cr b & 6 & { - 11} \cr c & { - 2} & 7 \cr } } \right|$$

= 20a $$-$$ 2(7b + 11c) $$-$$3($$-$$2b $$-$$ 6c)

= 20a $$-$$ 14b $$-$$ 22c + 6b +18c

= 20a $$-$$ 8b $$-$$ 4c

= 4(5a $$-$$ 2b $$-$$ c)

$${D_2} = \left| {\matrix{ 1 & a & { - 3} \cr 2 & b & { - 11} \cr 1 & c & 7 \cr } } \right|$$

= 7b + 11c $$-$$ a(25) $$-$$3(2c $$-$$ b)

= 7b + 11c $$-$$ 25a $$-$$ 6c + 3b

= $$-$$25a + 10b + 5c

= $$-$$5(5a $$-$$ 2b $$-$$ c)

$${D_3} = \left| {\matrix{ 1 & 2 & a \cr 2 & 6 & b \cr 1 & { - 2} & c \cr } } \right|$$

= 6c + 2b $$-$$ 2(2c $$-$$ b) $$-$$ 10a

= $$-$$10a + 4b + 2c

= $$-$$2(5a $$-$$ 2b $$-$$ c)

for infinite solution

$$D = {D_1} = {D_2} = {D_3} = 0$$

$$ \Rightarrow $$ 5a = 2b + c

Comments (0)

Advertisement