JEE MAIN - Mathematics (2021 - 26th August Morning Shift - No. 4)

Let $$\theta \in \left( {0,{\pi \over 2}} \right)$$. If the system of linear equations

$$(1 + {\cos ^2}\theta )x + {\sin ^2}\theta y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + (1 + {\sin ^2}\theta )y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + {\sin ^2}\theta y + (1 + 4\sin 3\,\theta )z = 0$$

has a non-trivial solution, then the value of $$\theta$$ is :
$${{4\pi } \over 9}$$
$${{7\pi } \over {18}}$$
$${\pi \over {18}}$$
$${{5\pi } \over {18}}$$

Explanation

$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\sin 3\,\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\sin 3\,\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\sin 3\,\theta } \cr } } \right| = 0$$

$${C_1} \to {C_1} + {C_2}$$

$$\left| {\matrix{ 2 & {{{\sin }^2}\theta } & {4\sin 3\,\theta } \cr 2 & {1 + {{\sin }^2}\theta } & {4\sin 3\,\theta } \cr 1 & {{{\sin }^2}\theta } & {1 + 4\sin 3\,\theta } \cr } } \right| = 0$$

$${R_1} \to {R_1} - {R_2},{R_2} \to {R_2} - {R_3}$$

$$\left| {\matrix{ 0 & { - 1} & 0 \cr 1 & 1 & { - 1} \cr 1 & {{{\sin }^2}\theta } & {1 + 4\sin 3\,\theta } \cr } } \right| = 0$$

or $$4\sin 3\theta = - 2$$

$$\sin 3\theta = - {1 \over 2}$$

$$\theta = {{7\pi } \over {18}}$$

Comments (0)

Advertisement