JEE MAIN - Mathematics (2021 - 26th August Evening Shift - No. 2)

Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right)$$. Then A2025 $$-$$ A2020 is equal to :
A6 $$-$$ A
A5
A5 $$-$$ A
A6

Explanation

$$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right] \Rightarrow {A^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right]$$

$${A^3} = \left[ {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right] \Rightarrow {A^4} = \left[ {\matrix{ 1 & 0 & 0 \cr 3 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right]$$

$${A^n} = \left[ {\matrix{ 1 & 0 & 0 \cr {n - 1} & 1 & 1 \cr 1 & 0 & 0 \cr } } \right]$$

$${A^{2025}} - {A^{2020}} = \left[ {\matrix{ 0 & 0 & 0 \cr 5 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$

$${A^6} - A = \left[ {\matrix{ 0 & 0 & 0 \cr 5 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$

Comments (0)

Advertisement