JEE MAIN - Mathematics (2021 - 25th July Evening Shift - No. 4)

If the greatest value of the term independent of 'x' in the

expansion of $${\left( {x\sin \alpha + a{{\cos \alpha } \over x}} \right)^{10}}$$ is $${{10!} \over {{{(5!)}^2}}}$$, then the value of 'a' is equal to :
$$-$$1
1
$$-$$2
2

Explanation

$${T_{r + 1}} = {}^{10}{C_r}{(x\sin \alpha )^{10 - r}}{\left( {{{a\cos \alpha } \over x}} \right)^r}$$

r = 0, 1, 2, ......., 10

Tr + 1 will be independent of x when 10 $$-$$ 2r = 0 $$\Rightarrow$$ r = 5

$${T_6} = {}^{10}{C_5}{(x\sin \alpha )^5} \times {\left( {{{a\cos \alpha } \over x}} \right)^5}$$

$$ = {}^{10}{C_5} \times {a^5} \times {1 \over {{2^5}}}{(\sin 2\alpha )^5}$$

will be greatest when sin2$$\alpha$$ = 1

$$ \Rightarrow {}^{10}{C_5}{{{a^5}} \over {{2^5}}} = {}^{10}{C_5} \Rightarrow a = 2$$

Comments (0)

Advertisement