JEE MAIN - Mathematics (2021 - 25th February Morning Shift - No. 21)
Explanation
Given, $$\overrightarrow a = \widehat i + 2\widehat j - \widehat k$$,
$$\overrightarrow b = \widehat i - \widehat j$$,
$$\overrightarrow c = \widehat i - \widehat j - \widehat k$$
$$\overrightarrow r \times \overrightarrow a = \overrightarrow c \times \overrightarrow a $$
$$ \Rightarrow \overrightarrow r \times \overrightarrow a - \overrightarrow c \times \overrightarrow a = 0$$
$$ \Rightarrow (\overrightarrow r - \overrightarrow c ) \times \overrightarrow a = 0$$
$$\therefore$$ $$\overrightarrow r - \overrightarrow c = \lambda \overrightarrow a $$
$$ \Rightarrow \overrightarrow r = \lambda \overrightarrow a + \overrightarrow c $$
$$ \Rightarrow \overrightarrow r \,.\,\overrightarrow b = \lambda \overrightarrow a \,.\,\overrightarrow b + \overrightarrow c \,.\,\overrightarrow b $$ (taking dot with $$\overrightarrow b $$)
$$ \Rightarrow 0 = \lambda \overrightarrow a \,.\,\overrightarrow b + \overrightarrow c \,.\,\overrightarrow b $$ [$$\because$$ $$\overrightarrow r \,.\,\overrightarrow b = 0$$]
$$ \Rightarrow \lambda (\widehat i + 2\widehat j - \widehat k)\,.\,(\widehat i - \widehat j) + (\widehat i - \widehat j - \widehat k)\,.\,(\widehat i - \widehat j) = 0$$
$$ \Rightarrow \lambda (1 - 2) + 2 = 0$$
$$ \Rightarrow \lambda = 2$$
$$\therefore$$ $$\overrightarrow r = 2\overrightarrow a + \overrightarrow c $$
$$ \Rightarrow \overrightarrow r \,.\,\overrightarrow a = 2\overrightarrow a \,.\,\overrightarrow a + \overrightarrow c \,.\,\overrightarrow a $$ [taking dot with $${\overrightarrow a }$$]
$$ = 2{\left| {\overrightarrow a } \right|^2} + \overrightarrow a \,.\,\overrightarrow c $$
$$ = 2(1 + 4 + 1) + (1 - 2 + 1)$$
$$ \Rightarrow \overrightarrow r \,.\,\overrightarrow a = 12$$
Comments (0)
