JEE MAIN - Mathematics (2021 - 25th February Morning Shift - No. 17)

If $$A = \left[ {\matrix{ 0 & { - \tan \left( {{\theta \over 2}} \right)} \cr {\tan \left( {{\theta \over 2}} \right)} & 0 \cr } } \right]$$ and
$$({I_2} + A){({I_2} - A)^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then $$13({a^2} + {b^2})$$ is equal to
Answer
13

Explanation

$$A = \left[ {\matrix{ 0 & { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} & 0 \cr } } \right]$$

$$ \Rightarrow I + A = \left[ {\matrix{ 1 & { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} & 1 \cr } } \right]$$

$$ \Rightarrow I - A = \left[ {\matrix{ 1 & {\tan {\theta \over 2}} \cr { - \tan {\theta \over 2}} & 1 \cr } } \right]$$ { $$\therefore$$ $$\left| {I - A} \right| = {\sec ^2}\theta /2$$}

$$ \Rightarrow {(I - A)^{ - 1}} = {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ 1 & { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} & 1 \cr } } \right]$$

$$ \Rightarrow (1 + A){(I - A)^{ - 1}} $$

$$= {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ 1 & { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} & 1 \cr } } \right]\left[ {\matrix{ 1 & { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} & 1 \cr } } \right]$$

$$ = {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ {1 - {{\tan }^2}{\theta \over 2}} & { - 2\tan {\theta \over 2}} \cr {2\tan {\theta \over 2}} & {1 - {{\tan }^2}{\theta \over 2}} \cr } } \right]$$

$$a = {{1 - {{\tan }^2}{\theta \over 2}} \over {{{\sec }^2}{\theta \over 2}}}$$

$$b = {{2\tan {\theta \over 2}} \over {{{\sec }^2}{\theta \over 2}}}$$

$$\therefore$$ $${a^2} + {b^2} = 1$$

$$ \Rightarrow $$ $$13({a^2} + {b^2})$$ = 13

Comments (0)

Advertisement