JEE MAIN - Mathematics (2021 - 25th February Morning Shift - No. 14)

The locus of the point of intersection of the lines $$\left( {\sqrt 3 } \right)kx + ky - 4\sqrt 3 = 0$$ and $$\sqrt 3 x - y - 4\left( {\sqrt 3 } \right)k = 0$$ is a conic, whose eccentricity is _________.
Answer
2

Explanation

$$\sqrt 3 kx + ky = 4\sqrt 3 $$ ........(1)

$$\sqrt 3 kx - ky = 4\sqrt 3 {k^2}$$ ....... (2)

Adding equation (1) & (2)

$$2\sqrt 3 kx = 4\sqrt 3 ({k^2} + 1)$$

$$x = 2\left( {k + {1 \over k}} \right)$$ ......... (3)

Substracting equation (1) & (2)

$$y = 2\sqrt 3 \left( {{1 \over k} - k} \right)$$ ........(4)

$$\therefore$$ $${{{x^2}} \over 4} - {{{y^2}} \over {12}} = 4$$

$${{{x^2}} \over {16}} - {{{y^2}} \over {48}} = 1$$ (Hyperbola)

$$ \therefore $$ $${e^2} = 1 + {{48} \over {16}}$$

$$ \Rightarrow $$ $$e = 2$$

Comments (0)

Advertisement