JEE MAIN - Mathematics (2021 - 25th February Evening Shift - No. 14)
If for the matrix, $$A = \left[ {\matrix{
1 & { - \alpha } \cr
\alpha & \beta \cr
} } \right]$$, $$A{A^T} = {I_2}$$, then the value of $${\alpha ^4} + {\beta ^4}$$ is :
3
2
1
4
Explanation
$$\left[ {\matrix{
1 & { - \alpha } \cr
\alpha & \beta \cr
} } \right]\left[ {\matrix{
1 & \alpha \cr
{ - \alpha } & \beta \cr
} } \right] = \left[ {\matrix{
{1 + {\alpha ^2}} & {\alpha - \alpha \beta } \cr
{\alpha - \alpha \beta } & {{\alpha ^2} + {\beta ^2}} \cr
} } \right] = \left[ {\matrix{
1 & 0 \cr
0 & 1 \cr
} } \right]$$
1 + $$\alpha$$2 = 1
$$\alpha$$2 = 0
$$\alpha$$2 + $$\beta$$2 = 1
$$\beta$$2 = 1
$$\alpha$$4 = 0
$$\beta$$4 = 1
$$\alpha$$4 + $$\beta$$4 = 1
1 + $$\alpha$$2 = 1
$$\alpha$$2 = 0
$$\alpha$$2 + $$\beta$$2 = 1
$$\beta$$2 = 1
$$\alpha$$4 = 0
$$\beta$$4 = 1
$$\alpha$$4 + $$\beta$$4 = 1
Comments (0)
