JEE MAIN - Mathematics (2021 - 25th February Evening Shift - No. 14)

If for the matrix, $$A = \left[ {\matrix{ 1 & { - \alpha } \cr \alpha & \beta \cr } } \right]$$, $$A{A^T} = {I_2}$$, then the value of $${\alpha ^4} + {\beta ^4}$$ is :
3
2
1
4

Explanation

$$\left[ {\matrix{ 1 & { - \alpha } \cr \alpha & \beta \cr } } \right]\left[ {\matrix{ 1 & \alpha \cr { - \alpha } & \beta \cr } } \right] = \left[ {\matrix{ {1 + {\alpha ^2}} & {\alpha - \alpha \beta } \cr {\alpha - \alpha \beta } & {{\alpha ^2} + {\beta ^2}} \cr } } \right] = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right]$$

1 + $$\alpha$$2 = 1

$$\alpha$$2 = 0

$$\alpha$$2 + $$\beta$$2 = 1

$$\beta$$2 = 1

$$\alpha$$4 = 0

$$\beta$$4 = 1

$$\alpha$$4 + $$\beta$$4 = 1

Comments (0)

Advertisement