JEE MAIN - Mathematics (2021 - 22th July Evening Shift - No. 8)

Let A = [aij] be a real matrix of order 3 $$\times$$ 3, such that ai1 + ai2 + ai3 = 1, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A3 is equal to :
2
1
3
9

Explanation

$$A = \left[ {\matrix{ {{a_{11}}} & {{a_{12}}} & {{a_{13}}} \cr {{a_{21}}} & {{a_{22}}} & {{a_{23}}} \cr {{a_{31}}} & {{a_{32}}} & {{a_{33}}} \cr } } \right]$$

Let $$x = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$

$$AX = \left[ {\matrix{ {{a_{11}} + {a_{12}} + {a_{13}}} \cr {{a_{21}} + {a_{22}} + {a_{23}}} \cr {{a_{31}} + {a_{32}} + {a_{33}}} \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$

$$\Rightarrow$$ AX = X

Replace X by AX

A2X = AX = X

Replace X by AX

A3X = AX = X

Let $${A^3} = \left[ {\matrix{ {{x_1}} & {{x_2}} & {{x_3}} \cr {{y_1}} & {{y_2}} & {{y_3}} \cr {{z_1}} & {{z_2}} & {{z_3}} \cr } } \right]$$

$${A^3}\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ {{x_1}} & {{x_2}} & {{x_3}} \cr {{y_1}} & {{y_2}} & {{y_3}} \cr {{z_1}} & {{z_2}} & {{z_3}} \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$

Sum of all the element = 3

Comments (0)

Advertisement