JEE MAIN - Mathematics (2021 - 22th July Evening Shift - No. 6)

The values of $$\lambda$$ and $$\mu$$ such that the system of equations $$x + y + z = 6$$, $$3x + 5y + 5z = 26$$, $$x + 2y + \lambda z = \mu $$ has no solution, are :
$$\lambda$$ = 3, $$\mu$$ = 5
$$\lambda$$ = 3, $$\mu$$ $$\ne$$ 10
$$\lambda$$ $$\ne$$ 2, $$\mu$$ = 10
$$\lambda$$ = 2, $$\mu$$ $$\ne$$ 10

Explanation

$$x + y + z = 6$$ ..... (i)

$$3x + 5y + 5z = 26$$ .... (ii)

$$x + 2y + \lambda z = \mu $$ ..... (iii)

$$5 \times (i) - (ii) \Rightarrow 2x = 4 \Rightarrow x = 2$$

$$\therefore$$ from (i) and (iii)

$$y + z = 4$$ ..... (iv)

$$2y + \lambda z = \mu - 2$$ .....(v)

$$(v) - 2 \times (iv)$$

$$ \Rightarrow (\lambda - 2)z = \mu - 10$$

$$ \Rightarrow z = {{\mu - 10} \over {\lambda - 2}}$$ & $$y = 4 - {{\mu - 10} \over {\lambda - 2}}$$

$$\therefore$$ For no solution $$\lambda$$ = 2 and $$\mu$$ $$\ne$$ 10.

Comments (0)

Advertisement