JEE MAIN - Mathematics (2021 - 22th July Evening Shift - No. 2)

Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} & {x > 0} \cr {3x{e^x},} & {x \le 0} \cr } } \right.$$. Then f is increasing function in the interval
$$\left( { - {1 \over 2},2} \right)$$
(0,2)
$$\left( { - 1,{3 \over 2}} \right)$$
($$-$$3, $$-$$1)

Explanation

$$f'(x)\left\{ {\matrix{ { - 4{x^2} + 4x + 3} & {x > 0} \cr {3{e^x}(1 + x)} & {x \le 0} \cr } } \right.$$

JEE Main 2021 (Online) 22th July Evening Shift Mathematics - Application of Derivatives Question 95 English Explanation
For x > 0, $$f'(x) = - 4{x^2} + 4x + 3$$

f(x) is increasing in $$\left( { - {1 \over 2},{3 \over 2}} \right)$$

For x $$\le$$ 0, f'(x) = 3ex(1 + x)

f'(x) > 0 $$\forall$$ x $$\in$$($$-$$1, 0)

$$\Rightarrow$$ f(x) is increasing in ($$-$$1, 0)

So, in complete domain, f(x) is increasing in $$\left( { - 1,{3 \over 2}} \right)$$

Comments (0)

Advertisement