JEE MAIN - Mathematics (2021 - 22th July Evening Shift - No. 12)

If the domain of the function $$f(x) = {{{{\cos }^{ - 1}}\sqrt {{x^2} - x + 1} } \over {\sqrt {{{\sin }^{ - 1}}\left( {{{2x - 1} \over 2}} \right)} }}$$ is the interval ($$\alpha$$, $$\beta$$], then $$\alpha$$ + $$\beta$$ is equal to :
$${3 \over 2}$$
2
$${1 \over 2}$$
1

Explanation

$$O \le {x^2} - x + 1 \le 1$$

$$ \Rightarrow {x^2} - x \le 0$$

$$ \Rightarrow x \in [0,1]$$

Also, $$0 < {\sin ^{ - 1}}\left( {{{2x - 1} \over 2}} \right) \le {\pi \over 2}$$

$$ \Rightarrow 0 < {{2x - 1} \over 2} \le 1$$

$$ \Rightarrow 0 < 2x - 1 \le 2$$

$$1 < 2x \le 3$$

$${1 \over 2} < x \le {3 \over 2}$$

Taking intersection

$$x \in \left( {{1 \over 2},1} \right]$$

$$ \Rightarrow \alpha = {1 \over 2},\beta = 1$$

$$ \Rightarrow \alpha + \beta = {3 \over 2}$$

Comments (0)

Advertisement