JEE MAIN - Mathematics (2021 - 22th July Evening Shift - No. 11)
Let n denote the number of solutions of the equation z2 + 3$$\overline z $$ = 0, where z is a complex number. Then the value of $$\sum\limits_{k = 0}^\infty {{1 \over {{n^k}}}} $$ is equal to :
1
$${4 \over 3}$$
$${3 \over 2}$$
2
Explanation
z2 + 3$$\overline z $$ = 0
Put z = x + iy
$$\Rightarrow$$ x2 $$-$$ y2 + 2ixy + 3(x $$-$$ iy) = 0
$$\Rightarrow$$ (x2 $$-$$ y2 + 3x) + i(2xy $$-$$ 3y) = 0 + i0
$$\therefore$$ x2 $$-$$ y2 + 3x = 0 ..... (1)
2xy $$-$$ 3y = 0 ..... (2)
x = $${3 \over 2}$$, y = 0
Put x = $${3 \over 2}$$ in equation (1)
$${9 \over 4} - {y^2} + {9 \over 2} = 0$$
$${y^2} = {{27} \over 4} \Rightarrow y = \pm {{3\sqrt 3 } \over 2}$$
$$\therefore$$ $$(x,y) = \left( {{3 \over 2},{{3\sqrt 3 } \over 2}} \right),\left( {{3 \over 2},{{ - 3\sqrt 3 } \over 2}} \right)$$
Put y = 0 $$\Rightarrow$$ x2 $$-$$ 0 + 3x = 0
x = 0, $$-$$3
$$\therefore$$ (x, y) = (0, 0), ($$-$$3, 0)
$$\therefore$$ No of solutions = n = 4
$$\sum\limits_{K = 0}^\infty {\left( {{1 \over {{n^k}}}} \right)} = \sum\limits_{K = 0}^\infty {\left( {{1 \over {4{n^k}}}} \right)} $$
$$ = {1 \over 1} + {1 \over 4} + {1 \over {16}} + {1 \over {64}} + ......$$
$$ = {1 \over {1 - {1 \over 4}}} = {4 \over 3}$$
Put z = x + iy
$$\Rightarrow$$ x2 $$-$$ y2 + 2ixy + 3(x $$-$$ iy) = 0
$$\Rightarrow$$ (x2 $$-$$ y2 + 3x) + i(2xy $$-$$ 3y) = 0 + i0
$$\therefore$$ x2 $$-$$ y2 + 3x = 0 ..... (1)
2xy $$-$$ 3y = 0 ..... (2)
x = $${3 \over 2}$$, y = 0
Put x = $${3 \over 2}$$ in equation (1)
$${9 \over 4} - {y^2} + {9 \over 2} = 0$$
$${y^2} = {{27} \over 4} \Rightarrow y = \pm {{3\sqrt 3 } \over 2}$$
$$\therefore$$ $$(x,y) = \left( {{3 \over 2},{{3\sqrt 3 } \over 2}} \right),\left( {{3 \over 2},{{ - 3\sqrt 3 } \over 2}} \right)$$
Put y = 0 $$\Rightarrow$$ x2 $$-$$ 0 + 3x = 0
x = 0, $$-$$3
$$\therefore$$ (x, y) = (0, 0), ($$-$$3, 0)
$$\therefore$$ No of solutions = n = 4
$$\sum\limits_{K = 0}^\infty {\left( {{1 \over {{n^k}}}} \right)} = \sum\limits_{K = 0}^\infty {\left( {{1 \over {4{n^k}}}} \right)} $$
$$ = {1 \over 1} + {1 \over 4} + {1 \over {16}} + {1 \over {64}} + ......$$
$$ = {1 \over {1 - {1 \over 4}}} = {4 \over 3}$$
Comments (0)
