JEE MAIN - Mathematics (2021 - 20th July Morning Shift - No. 15)

The probability of selecting integers a$$\in$$[$$-$$ 5, 30] such that x2 + 2(a + 4)x $$-$$ 5a + 64 > 0, for all x$$\in$$R, is :
$${7 \over {36}}$$
$${2 \over {9}}$$
$${1 \over {6}}$$
$${1 \over {4}}$$

Explanation

D < 0

$$\Rightarrow$$ 4(a + 4)2 $$-$$ 4($$-$$5a + 64) < 0

$$\Rightarrow$$ a2 + 16 + 8a + 5a $$-$$ 64 < 0

$$\Rightarrow$$ a2 + 13a $$-$$ 48 < 0

$$\Rightarrow$$ (a + 16) (a $$-$$ 3) < 0

$$\Rightarrow$$ a $$\in$$ ($$-$$16, 3)

$$\therefore$$ Possible a : {$$-$$5, $$-$$4, ............., 3}

$$\therefore$$ Required probability = $${8 \over {36}}$$ = $${2 \over {9}}$$

Comments (0)

Advertisement