JEE MAIN - Mathematics (2021 - 20th July Evening Shift - No. 8)

The sum of all the local minimum values of the twice differentiable function f : R $$\to$$ R defined by $$f(x) = {x^3} - 3{x^2} - {{3f''(2)} \over 2}x + f''(1)$$ is :
$$-$$22
5
$$-$$27
0

Explanation

$$f(x) = {x^3} - 3{x^2} - {{3f''(2)} \over 2}x + f''(1)$$ ..... (i)

$$f(x) = 3{x^2} - 6x - {3 \over 2}f''(2)$$ ..... (ii)

$$f''(x) = 6x - 6$$ ..... (iii)

Now, is 3rd equation

$$f''(2) = 12 - 6 = 6$$

$$f''(11 = 0)$$

Use (ii)

$$f'(x) = 3{x^2} - 6x - {3 \over 2}f''(2)$$

$$f'(x) = 3{x^2} - 6x - {3 \over 2} \times 6$$

$$f'(x) = 3{x^2} - 6x - 9$$

$$f'(x) = 0$$

$$3{x^2} - 6x - 9 = 0$$

$$\Rightarrow$$ x = $$-$$1 & 3

Use (iii)

$$f''(x) = 6x - 6$$

$$f''( - 1) = - 12 < 0$$ maxima

$$f''(3) = 12 > 0$$ minima.

Use (i)

$$f(x) = {x^3} - 3{x^2} - {3 \over 2}f''(2)x + f''(1)$$

$$f(x) = {x^3} - 3{x^2} - {3 \over 2} \times 6 \times x + 0$$

$$f(x) = {x^3} - 3{x^2} - 9x$$

$$f(3) = 27 - 27 - 9 \times 3 = - 27$$

Comments (0)

Advertisement