JEE MAIN - Mathematics (2021 - 20th July Evening Shift - No. 19)

If the point on the curve y2 = 6x, nearest to the point $$\left( {3,{3 \over 2}} \right)$$ is ($$\alpha$$, $$\beta$$), then 2($$\alpha$$ + $$\beta$$) is equal to _____________.
Answer
9

Explanation

Let, $$P \equiv \left( {{3 \over 2}{t^2},3t} \right)$$ is on the curve.

Normal at point P

$$tx + y = 3t + {3 \over 2}{t^3}$$

Passes through $$\left( {3,{3 \over 2}} \right)$$

$$ \Rightarrow 3t + {3 \over 2} = 3t + {3 \over 2}{t^3}$$

$$ \Rightarrow {t^3} = 1 \Rightarrow t = 1$$

$$P \equiv \left( {{3 \over 2},3} \right) = (\alpha ,\beta )$$

$$2(\alpha + \beta ) = 2\left( {{3 \over 2} + 3} \right) = 9$$

Comments (0)

Advertisement