JEE MAIN - Mathematics (2021 - 20th July Evening Shift - No. 15)

The number of solutions of the equation

$${\log _{(x + 1)}}(2{x^2} + 7x + 5) + {\log _{(2x + 5)}}{(x + 1)^2} - 4 = 0$$, x > 0, is :
Answer
1

Explanation

$${\log _{(x + 1)}}(2{x^2} + 7x + 5) + {\log _{(2x + 5)}}{(x + 1)^2} - 4 = 0$$

$${\log _{(x + 1)}}(2x + 5)(x + 1) + 2{\log _{(2x + 5)}}(x + 1) = 4$$

$${\log _{(x + 1)}}(2x + 5) + 1 + 2{\log _{(2x + 5)}}(x + 1) = 4$$

Put $${\log _{(x + 1)}}(2x + 5) = t$$

$$t + {2 \over t} = 3 \Rightarrow {t^2} - 3t + 2 = 0$$

t = 1, 2

$${\log _{(x + 1)}}(2x + 5) = 1$$ & $${\log _{(x + 1)}}(2x + 5) = 2$$

$$x + 1 = 2x + 3$$ & $$2x + 5 = {(x + 1)^2}$$

$$x = - 4$$ (rejected)

$${x^2} = 4 \Rightarrow x = 2, - 2$$ (rejected)

So, x = 2

No. of solution = 1

Comments (0)

Advertisement