JEE MAIN - Mathematics (2021 - 20th July Evening Shift - No. 12)
Let P be a variable point on the parabola $$y = 4{x^2} + 1$$. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y = x is :
$${(3x - y)^2} + (x - 3y) + 2 = 0$$
$$2{(3x - y)^2} + (x - 3y) + 2 = 0$$
$${(3x - y)^2} + 2(x - 3y) + 2 = 0$$
$$2{(x - 3y)^2} + (3x - y) + 2 = 0$$
Explanation
Given, parabola $$y = 4{x^2} + 1$$
_20th_July_Evening_Shift_en_12_1.png)
Let R(a, b) be mid-point of line joining point P and Q where PQ is perpendicular to line y = x.
Let coordinates of P be P(x, y), Q(q, q) and R(a, b) then,
$$a = {{x + q} \over 2}$$ and $$b = {{y + q} \over 2}$$
Now, slope of line y = x is m1 = 1
Slope of line PQ be
$${{b - q} \over {a - q}} = {m_2}$$ (say)
$$\because$$ Line y = x and PQ are perpendicular to each other,
m1 . m2 = $$-$$1
$$ \Rightarrow {{b - q} \over {a - q}} = - 1 \Rightarrow b - q = q - a$$
$$ \Rightarrow q = {{b + a} \over 2}$$
$$\therefore$$ $$a = {{x + q} \over 2} = {{x + \left( {{{b + a} \over 2}} \right)} \over 2} = {{2x + b + a} \over 4}$$
$$ \Rightarrow x = {{4a - b - a} \over 2} = {{3a - b} \over 2}$$
and $$b = {{y + q} \over 2} = {{y + \left( {{{b + a} \over 2}} \right)} \over 2} = {{2y + b + a} \over 4}$$
$$ \Rightarrow y = {{3b - a} \over 2}$$
Put (x, y) in equation of parabola as P(x, y) is variable point on parabola
$${{3b - a} \over 2} = 4{\left( {{{3a - b} \over 2}} \right)^2} + 1$$
$${{(3b - a)} \over 2} = {(3a - b)^2} + 1$$
$$ \Rightarrow (3b - a) = 2{(3a - b)^2} + 2$$
Replace (a, b) as (x, y) $$\Rightarrow$$ (3y $$-$$ x) = 2(3x $$-$$ y)2 + 2
or $$2{(3x - y)^2} + (x - 3y) + 2 = 0$$
_20th_July_Evening_Shift_en_12_1.png)
Let R(a, b) be mid-point of line joining point P and Q where PQ is perpendicular to line y = x.
Let coordinates of P be P(x, y), Q(q, q) and R(a, b) then,
$$a = {{x + q} \over 2}$$ and $$b = {{y + q} \over 2}$$
Now, slope of line y = x is m1 = 1
Slope of line PQ be
$${{b - q} \over {a - q}} = {m_2}$$ (say)
$$\because$$ Line y = x and PQ are perpendicular to each other,
m1 . m2 = $$-$$1
$$ \Rightarrow {{b - q} \over {a - q}} = - 1 \Rightarrow b - q = q - a$$
$$ \Rightarrow q = {{b + a} \over 2}$$
$$\therefore$$ $$a = {{x + q} \over 2} = {{x + \left( {{{b + a} \over 2}} \right)} \over 2} = {{2x + b + a} \over 4}$$
$$ \Rightarrow x = {{4a - b - a} \over 2} = {{3a - b} \over 2}$$
and $$b = {{y + q} \over 2} = {{y + \left( {{{b + a} \over 2}} \right)} \over 2} = {{2y + b + a} \over 4}$$
$$ \Rightarrow y = {{3b - a} \over 2}$$
Put (x, y) in equation of parabola as P(x, y) is variable point on parabola
$${{3b - a} \over 2} = 4{\left( {{{3a - b} \over 2}} \right)^2} + 1$$
$${{(3b - a)} \over 2} = {(3a - b)^2} + 1$$
$$ \Rightarrow (3b - a) = 2{(3a - b)^2} + 2$$
Replace (a, b) as (x, y) $$\Rightarrow$$ (3y $$-$$ x) = 2(3x $$-$$ y)2 + 2
or $$2{(3x - y)^2} + (x - 3y) + 2 = 0$$
Comments (0)
