JEE MAIN - Mathematics (2021 - 20th July Evening Shift - No. 11)

Let $$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$, where $$f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right),x \in R$$. Then which one of the following is correct?
g(1) = g(0)
$$\sqrt 2 g(1) = g(0)$$
$$g(1) = \sqrt 2 g(0)$$
g(1) + g(0) = 0

Explanation

$$\because$$ $$f(x) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$$

$$\therefore$$ $$f(x) + f( - x) = \ln \left( {\sqrt {{x^2} + 1} + x} \right) + \ln \left( {\sqrt {{x^2} + 1} - x} \right)$$

$$\therefore$$ $$f(x) + f( - x) = 0$$ .... (i)

$$\because$$ $$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$

$$ = \int_0^{\pi /2} {\left\{ {\cos \left( {{\pi \over 4}t + f(x)} \right) + \cos \left( {{\pi \over 4}t + f( - x)} \right)} \right\}} dx$$

$$ = \int_0^{\pi /2} {\left\{ {\cos \left( {{{\pi t} \over 4} + f(x)} \right) + \cos \left( {{{\pi t} \over 4} - f(x)} \right)} \right\}dx} $$

$$g(t) = 2\int_0^{\pi /2} {\cos {{\pi t} \over 4}.\cos (f(x))dx} $$

$$\therefore$$ $$g(1) = \sqrt 2 \int_0^{\pi /2} {\cos \left( {f(x)} \right)} dx$$ and

$$g(0) = 2\int_0^{\pi /2} {\cos \left( {f(x)} \right)} dx$$

$$\therefore$$ $$\sqrt 2 g(1) = g(0)$$

Comments (0)

Advertisement