JEE MAIN - Mathematics (2021 - 1st September Evening Shift - No. 3)

Consider the system of linear equations

$$-$$x + y + 2z = 0

3x $$-$$ ay + 5z = 1

2x $$-$$ 2y $$-$$ az = 7

Let S1 be the set of all a$$\in$$R for which the system is inconsistent and S2 be the set of all a$$\in$$R for which the system has infinitely many solutions. If n(S1) and n(S2) denote the number of elements in S1 and S2 respectively, then
n(S1) = 2, n(S2) = 2
n(S1) = 1, n(S2) = 0
n(S1) = 2, n(S2) = 0
n(S1) = 0, n(S2) = 2

Explanation

$$\Delta = \left| {\matrix{ { - 1} & 1 & 2 \cr 3 & { - a} & 5 \cr 2 & { - 2} & { - a} \cr } } \right|$$

$$ = - 1({a^2} + 10) - 1( - 3a - 10) + 2( - 6 + 2a)$$

$$ = - {a^2} - 10 + 3a + 10 - 12 + 4a$$

$$\Delta = - {a^2} + 7a - 12$$

$$\Delta = - [{a^2} - 7a + 12]$$

$$\Delta = - [(a - 3)(a - 4)]$$

$${\Delta _1} = \left| {\matrix{ 0 & 1 & 2 \cr 1 & { - a} & 5 \cr 7 & { - 2} & { - a} \cr } } \right|$$


$$ = a + 35 - 4 + 14a$$

= $$15a + 31$$

Now, $${\Delta _1} = 15a + 31$$

For inconsistent $$\Delta$$ = 0 $$\therefore$$ a = 3, a = 4 and for a = 3 and 4, $$\Delta$$1 $$\ne$$ 0

n(S1) = 2

For infinite solution : $$\Delta$$ = 0 and $$\Delta$$1 = $$\Delta$$2 = $$\Delta$$3 = 0

Not possible

$$\therefore$$ n(S2) = 0

Comments (0)

Advertisement