JEE MAIN - Mathematics (2021 - 1st September Evening Shift - No. 15)
Let X be a random variable with distribution.
If the mean of X is 2.3 and variance of X is $$\sigma$$2, then 100 $$\sigma$$2 is equal to :
x | $$ - $$2 | $$ - $$1 | 3 | 4 | 6 |
---|---|---|---|---|---|
P(X = x) | $${1 \over 5}$$ | a | $${1 \over 3}$$ | $${1 \over 5}$$ | b |
If the mean of X is 2.3 and variance of X is $$\sigma$$2, then 100 $$\sigma$$2 is equal to :
Answer
781
Explanation
x | $$ - $$2 | $$ - $$1 | 3 | 4 | 6 |
---|---|---|---|---|---|
P(X = x) | $${1 \over 5}$$ | a | $${1 \over 3}$$ | $${1 \over 5}$$ | b |
$$\overline X $$ = 2.3
$$-$$a + 6b = $${9 \over {10}}$$ ..... (1)
$$\sum {{P_i} = {1 \over 5} + a + {1 \over 3} + {1 \over 5} + b = 1} $$
$$a + b = {4 \over {15}}$$ .... (2)
From equation (1) and (2)
$$a = {1 \over {10}},b = {1 \over 6}$$
$${\sigma ^2} = \sum {{p_i}x_i^2 - {{(\overline X )}^2}} $$
$${1 \over 5}(4) + a(1) + {1 \over 3}(9) + {1 \over 5}(16) + b(36) - {(2.3)^2}$$
$$ = {4 \over 5} + a + 3 + {{16} \over 5} + 36b - {(2.3)^2}$$
$$ = 4 + a + 3 + 36b - {(2.3)^2}$$
$$ = 7 + a + 36b - {(2.3)^2}$$
$$ = 7 + {1 \over {10}} + 6 - {(2.3)^2}$$
$$ = 13 + {1 \over {10}} - {\left( {{{23} \over {10}}} \right)^2}$$
$$ = {{131} \over {10}} - {\left( {{{23} \over {10}}} \right)^2}$$
$$ = {{1310 - {{(23)}^2}} \over {100}}$$
$$ = {{1310 - 529} \over {100}}$$
$${\sigma ^2} = {{781} \over {100}}$$
$$100{\sigma ^2} = 781$$
Comments (0)
