JEE MAIN - Mathematics (2021 - 1st September Evening Shift - No. 13)
Let a1, a2, ..........., a21 be an AP such that $$\sum\limits_{n = 1}^{20} {{1 \over {{a_n}{a_{n + 1}}}} = {4 \over 9}} $$. If the sum of this AP is 189, then a6a16 is equal to :
57
72
48
36
Explanation
$$\sum\limits_{n = 1}^{20} {{1 \over {{a_n}{a_{n + 1}}}} = \sum\limits_{n = 1}^{20} {{1 \over {{a_n}({a_n} + d)}}} } $$
$$ = {1 \over d}\sum\limits_{n = 1}^{20} {\left( {{1 \over {{a_n}}} - {1 \over {{a_n} + d}}} \right)} $$
$$ \Rightarrow {1 \over d}\left( {{1 \over {{a_1}}} - {1 \over {{a_{21}}}}} \right) = {4 \over 9}$$ (Given)
$$ \Rightarrow {1 \over d}\left( {{{{a_{21}} - {a_1}} \over {{a_1}{a_{21}}}}} \right) = {4 \over 9}$$
$$ \Rightarrow {1 \over d}\left( {{{{a_1} + 20d - {a_1}} \over {{a_1}{a_2}}}} \right) = {4 \over 9} \Rightarrow {a_1}{a_2} = 45$$ .... (1)
Now sum of first 21 terms = $${{21} \over 2}(2{a_1} + 20d) = 189$$
$$\Rightarrow$$ a1 + 10d = 9 ..... (2)
For equation (1) & (2) we get
a1 = 3 & d = $${3 \over 5}$$
or a1 = 15 & d = $$ - {3 \over 5}$$
So, a6 . a16 = (a1 + 5d) (a1 + 15d)
$$\Rightarrow$$ a6a16 = 72
Option (b)
$$ = {1 \over d}\sum\limits_{n = 1}^{20} {\left( {{1 \over {{a_n}}} - {1 \over {{a_n} + d}}} \right)} $$
$$ \Rightarrow {1 \over d}\left( {{1 \over {{a_1}}} - {1 \over {{a_{21}}}}} \right) = {4 \over 9}$$ (Given)
$$ \Rightarrow {1 \over d}\left( {{{{a_{21}} - {a_1}} \over {{a_1}{a_{21}}}}} \right) = {4 \over 9}$$
$$ \Rightarrow {1 \over d}\left( {{{{a_1} + 20d - {a_1}} \over {{a_1}{a_2}}}} \right) = {4 \over 9} \Rightarrow {a_1}{a_2} = 45$$ .... (1)
Now sum of first 21 terms = $${{21} \over 2}(2{a_1} + 20d) = 189$$
$$\Rightarrow$$ a1 + 10d = 9 ..... (2)
For equation (1) & (2) we get
a1 = 3 & d = $${3 \over 5}$$
or a1 = 15 & d = $$ - {3 \over 5}$$
So, a6 . a16 = (a1 + 5d) (a1 + 15d)
$$\Rightarrow$$ a6a16 = 72
Option (b)
Comments (0)
