JEE MAIN - Mathematics (2021 - 1st September Evening Shift - No. 11)
Let P1, P2, ......, P15 be 15 points on a circle. The number of distinct triangles formed by points Pi, Pj, Pk such that i +j + k $$\ne$$ 15, is :
12
419
443
455
Explanation
Total number of triangles = $${}^{15}{C_3}$$
i + j + k = 15 (Given)
_1st_September_Evening_Shift_en_11_1.png)
Number of possible triangles using the vertices Pi, Pj, Pk such that i + j + k $$\ne$$ 15 is equal to $${}^{15}{C_3}$$ $$-$$ 12 = 443
Option (c)
i + j + k = 15 (Given)
_1st_September_Evening_Shift_en_11_1.png)
Number of possible triangles using the vertices Pi, Pj, Pk such that i + j + k $$\ne$$ 15 is equal to $${}^{15}{C_3}$$ $$-$$ 12 = 443
Option (c)
Comments (0)
