JEE MAIN - Mathematics (2021 - 18th March Morning Shift - No. 22)

A square ABCD has all its vertices on the curve x2y2 = 1. The midpoints of its sides also lie on the same curve. Then, the square of area of ABCD is _________.
Answer
80

Explanation

x2y2 = 1

$$ \Rightarrow $$ y2 = $${1 \over {{x^2}}}$$

$$ \Rightarrow $$ y = $$ \pm {1 \over x}$$

Graph of this equation,

$$OA \bot OB$$

$$ \Rightarrow \left( {{1 \over {{p^2}}}} \right)\left( { - {1 \over {{q^2}}}} \right) = - 1$$

$$ \Rightarrow {p^2}{q^2} = 1$$

$$P\left( {{{p + q} \over 2},{{{1 \over p} - {1 \over q}} \over 2}} \right)$$ midpoint of AB lies

On $${x^2}{y^2} = 1$$

$$ \Rightarrow {(p + q)^2}{\left( {{1 \over p} - {1 \over q}} \right)^2} = 16$$

$$ \Rightarrow {(p + q)^2}{(p - q)^2} = 16$$

$$ \Rightarrow {({p^2} - {q^2})^2} = 16$$

$$ \Rightarrow {P^2} - {1 \over {{P^2}}} = \pm 4$$

$$ \Rightarrow {p^4} \pm 4{p^2} - 1 = 0$$

$$ \Rightarrow {p^2} = {{ \pm 4 \pm \sqrt {20} } \over 2} = \pm 2 \pm \sqrt 5 $$

$$ \Rightarrow {p^2} = 2 + \sqrt 5 $$ or $$ - 2 + \sqrt 5 $$

$$O{B^2} = {p^2} + {1 \over {{p^2}}} = 2 + \sqrt 5 + {1 \over {2 + \sqrt 5 }}$$ or $$ - 2 + \sqrt 5 + {1 \over { - 2 + \sqrt 5 }} = 2\sqrt 5 $$

Area $$ = 4\left( {{1 \over 2}} \right)(OA)(OB) = 2{(OB)^2} = 4\sqrt 5 $$JEE Main 2021 (Online) 18th March Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 75 English Explanation

Comments (0)

Advertisement