JEE MAIN - Mathematics (2021 - 18th March Morning Shift - No. 15)
The value of $$3 + {1 \over {4 + {1 \over {3 + {1 \over {4 + {1 \over {3 + ....\infty }}}}}}}}$$ is equal to
1.5 + $$\sqrt 3 $$
2 + $$\sqrt 3 $$
3 + 2$$\sqrt 3 $$
4 + $$\sqrt 3 $$
Explanation
Let $$x = 3 + {1 \over {4 + {1 \over {3 + {1 \over {4 + {1 \over {3 + ....\infty }}}}}}}}$$
So, $$x = 3 + {1 \over {4 + {1 \over x}}} = 3 + {1 \over {{{4x + 1} \over x}}}$$
$$ \Rightarrow (x - 3) = {x \over {(4x + 1)}}$$
$$ \Rightarrow (4x + 1)(x - 3) = x$$
$$ \Rightarrow 4{x^2} - 12x + x - 3 = x$$
$$ \Rightarrow 4{x^2} - 12x - 3 = 0$$
$$x = {{12 \pm \sqrt {{{(12)}^2} + 12 \times 4} } \over {2 \times 4}} = {{12 \pm \sqrt {12(16)} } \over 8}$$
$$ = {{12 \pm 4 \times 2\sqrt 3 } \over 8} = {{3 \pm 2\sqrt 3 } \over 2}$$
$$x = {3 \over 2} \pm \sqrt 3 = 1.5 \pm \sqrt 3 $$.
But only positive value is accepted
So, x = $$1.5 + \sqrt 3 $$
So, $$x = 3 + {1 \over {4 + {1 \over x}}} = 3 + {1 \over {{{4x + 1} \over x}}}$$
$$ \Rightarrow (x - 3) = {x \over {(4x + 1)}}$$
$$ \Rightarrow (4x + 1)(x - 3) = x$$
$$ \Rightarrow 4{x^2} - 12x + x - 3 = x$$
$$ \Rightarrow 4{x^2} - 12x - 3 = 0$$
$$x = {{12 \pm \sqrt {{{(12)}^2} + 12 \times 4} } \over {2 \times 4}} = {{12 \pm \sqrt {12(16)} } \over 8}$$
$$ = {{12 \pm 4 \times 2\sqrt 3 } \over 8} = {{3 \pm 2\sqrt 3 } \over 2}$$
$$x = {3 \over 2} \pm \sqrt 3 = 1.5 \pm \sqrt 3 $$.
But only positive value is accepted
So, x = $$1.5 + \sqrt 3 $$
Comments (0)
