JEE MAIN - Mathematics (2021 - 18th March Morning Shift - No. 12)
If $$f(x) = \left\{ {\matrix{
{{1 \over {|x|}}} & {;\,|x|\, \ge 1} \cr
{a{x^2} + b} & {;\,|x|\, < 1} \cr
} } \right.$$ is differentiable at every point of the domain, then the values of a and b are respectively :
$${1 \over 2},{1 \over 2}$$
$${1 \over 2}, - {3 \over 2}$$
$${5 \over 2}, - {3 \over 2}$$
$$ - {1 \over 2},{3 \over 2}$$
Explanation
$$f(x) = \left\{ {\matrix{
{{1 \over {|x|}},} & {|x| \ge 1} \cr
{a{x^2} + b,} & {|x| < 1} \cr
} } \right.$$
$$ = \left\{ {\matrix{ { - {1 \over x};} & {x \le - 1} \cr {a{x^2} + b;} & { - 1 < x < 1} \cr {{1 \over x};} & {x \ge 1} \cr } } \right.$$
As f(x) is differentiable so it is also continuous,
at x = 1,
$$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} f(x)$$
$$ \Rightarrow a + b = {1 \over 1}$$
$$ \Rightarrow a + b = 1$$ ...... (1)
As f(x) is differentiable, so at x = 1
L.H.D. = R.H.D.
$$ \Rightarrow 2ax = - {1 \over {{x^2}}}$$
$$ \Rightarrow 2a = - 1$$
$$ \Rightarrow a = - {1 \over 2}$$
From (1), $$b = {3 \over 2}$$
$$ = \left\{ {\matrix{ { - {1 \over x};} & {x \le - 1} \cr {a{x^2} + b;} & { - 1 < x < 1} \cr {{1 \over x};} & {x \ge 1} \cr } } \right.$$
As f(x) is differentiable so it is also continuous,
at x = 1,
$$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} f(x)$$
$$ \Rightarrow a + b = {1 \over 1}$$
$$ \Rightarrow a + b = 1$$ ...... (1)
As f(x) is differentiable, so at x = 1
L.H.D. = R.H.D.
$$ \Rightarrow 2ax = - {1 \over {{x^2}}}$$
$$ \Rightarrow 2a = - 1$$
$$ \Rightarrow a = - {1 \over 2}$$
From (1), $$b = {3 \over 2}$$
Comments (0)
