JEE MAIN - Mathematics (2021 - 18th March Morning Shift - No. 11)

If the functions are defined as $$f(x) = \sqrt x $$ and $$g(x) = \sqrt {1 - x} $$, then what is the common domain of the following functions :

f + g, f $$-$$ g, f/g, g/f, g $$-$$ f where $$(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$$
$$0 \le x \le 1$$
$$0 \le x < 1$$
$$0 < x < 1$$
$$0 < x \le 1$$

Explanation

$$f + g = \sqrt x + \sqrt {1 - x} $$

$$ \Rightarrow x \ge 0$$ & $$1 - x \ge 0 \Rightarrow x \in [0,1]$$

$$f - g = \sqrt x - \sqrt {1 - x} $$

$$ \Rightarrow x \ge 0$$ & $$1 - x \ge 0 \Rightarrow x \in [0,1]$$

$$f/g = {{\sqrt x } \over {\sqrt {1 - x} }}$$

$$ \Rightarrow x \ge 0$$ & $$1 - x > 0 \Rightarrow x \in [0,1)$$

$$g/f = {{\sqrt {1 - x} } \over {\sqrt x }}$$

$$ \Rightarrow 1 - x \ge 0$$ & $$x > 0 \Rightarrow x \in (0,1]$$

$$g - f = \sqrt {1 - x} - \sqrt x $$

$$ \Rightarrow 1 - x \ge 0$$ & $$x \ge 0 \Rightarrow x \in [0,1]$$

$$ \Rightarrow $$ $$x \in (0,1)$$

Comments (0)

Advertisement