JEE MAIN - Mathematics (2021 - 18th March Evening Shift - No. 3)
The area bounded by the curve 4y2 = x2(4 $$-$$ x)(x $$-$$ 2) is equal to :
$${\pi \over {16}}$$
$${\pi \over {8}}$$
$${3\pi \over {2}}$$
$${3\pi \over {8}}$$
Explanation
Given,
4y2 = x2(4 $$-$$ x)(x $$-$$ 2) ..... (1)
Here, Left hand side 4y2 is always positive. So Right hand side should also be positive.
In x$$\in$$ [2, 4] Right hand side is positive.
By putting y = $$-$$y in equation (1), equation remains same. So, graph is symmetric about x axis.
Required Area = 2A1
$$ = 2\int_2^4 y dx$$
$$ = \int_2^4 {x\sqrt {(x - 2)(4 - x)} } dx$$
put $$x = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow dx = \left[ {4(2\sin \theta \cos \theta - 4\sin \theta \cos \theta )} \right]d\theta $$
$$ \Rightarrow dx = 4\sin \theta \cos \theta d\theta $$
When lower limit = 2 then
$$2 = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow 4(1 - {\cos ^2}\theta ) + 2{\cos ^2}\theta = 2$$
$$ \Rightarrow 4 - 4{\cos ^2}\theta + 2{\cos ^2}\theta = 2$$
$$ \Rightarrow 2{\cos ^2}\theta = 2$$
$$ \Rightarrow \cos \theta = \pm 1$$
$$ \Rightarrow \theta = 0,\pi {} $$
When upper limit = 4 then
$$4 = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow - 2{\cos ^2}\theta = 0$$
$$ \Rightarrow \theta = {{\pi {} } \over 2}$$
$$ \therefore $$ Range of $$\theta$$ = 0 to $${{{\pi {} } \over 2}}$$
$$ \therefore $$ Area = $$ \int_0^{{{\pi {} } \over 2}} {(4{{\sin }^2}\theta + 2{{\cos }^2}\theta )\sqrt {(2{{\sin }^2}\theta )(2{{\cos }^2}\theta )} (4\sin \theta \cos \theta )d\theta } $$
$$ = \int_0^{{{\pi {} } \over 2}} {(4{{\sin }^2}\theta + 2{{\cos }^2}\theta )8{{\sin }^2}\theta {{\cos }^2}\theta d\theta } $$
$$ = 32\int_0^{{{\pi {} } \over 2}} {{{\sin }^4}\theta {{\cos }^2}\theta d\theta } + 16\int_0^{{{\pi {} } \over 2}} {{{\sin }^2}\theta {{\cos }^2}\theta d\theta } $$
Using Wallis formula,
$$ = 32.{{3.1.1} \over {6.4.2}}.{{\pi {} } \over 2} + 16.{{1.3.1} \over {6.4.2}}.{{\pi {} } \over 2}$$
$$ = \pi {} + {{\pi {} } \over 2}$$
$$ = {{3\pi {} } \over 2}$$
4y2 = x2(4 $$-$$ x)(x $$-$$ 2) ..... (1)
Here, Left hand side 4y2 is always positive. So Right hand side should also be positive.
In x$$\in$$ [2, 4] Right hand side is positive.
By putting y = $$-$$y in equation (1), equation remains same. So, graph is symmetric about x axis.
_18th_March_Evening_Shift_en_3_2.png)
Required Area = 2A1
$$ = 2\int_2^4 y dx$$
$$ = \int_2^4 {x\sqrt {(x - 2)(4 - x)} } dx$$
put $$x = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow dx = \left[ {4(2\sin \theta \cos \theta - 4\sin \theta \cos \theta )} \right]d\theta $$
$$ \Rightarrow dx = 4\sin \theta \cos \theta d\theta $$
When lower limit = 2 then
$$2 = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow 4(1 - {\cos ^2}\theta ) + 2{\cos ^2}\theta = 2$$
$$ \Rightarrow 4 - 4{\cos ^2}\theta + 2{\cos ^2}\theta = 2$$
$$ \Rightarrow 2{\cos ^2}\theta = 2$$
$$ \Rightarrow \cos \theta = \pm 1$$
$$ \Rightarrow \theta = 0,\pi {} $$
When upper limit = 4 then
$$4 = 4{\sin ^2}\theta + 2{\cos ^2}\theta $$
$$ \Rightarrow - 2{\cos ^2}\theta = 0$$
$$ \Rightarrow \theta = {{\pi {} } \over 2}$$
$$ \therefore $$ Range of $$\theta$$ = 0 to $${{{\pi {} } \over 2}}$$
$$ \therefore $$ Area = $$ \int_0^{{{\pi {} } \over 2}} {(4{{\sin }^2}\theta + 2{{\cos }^2}\theta )\sqrt {(2{{\sin }^2}\theta )(2{{\cos }^2}\theta )} (4\sin \theta \cos \theta )d\theta } $$
$$ = \int_0^{{{\pi {} } \over 2}} {(4{{\sin }^2}\theta + 2{{\cos }^2}\theta )8{{\sin }^2}\theta {{\cos }^2}\theta d\theta } $$
$$ = 32\int_0^{{{\pi {} } \over 2}} {{{\sin }^4}\theta {{\cos }^2}\theta d\theta } + 16\int_0^{{{\pi {} } \over 2}} {{{\sin }^2}\theta {{\cos }^2}\theta d\theta } $$
Using Wallis formula,
$$ = 32.{{3.1.1} \over {6.4.2}}.{{\pi {} } \over 2} + 16.{{1.3.1} \over {6.4.2}}.{{\pi {} } \over 2}$$
$$ = \pi {} + {{\pi {} } \over 2}$$
$$ = {{3\pi {} } \over 2}$$
Comments (0)
