JEE MAIN - Mathematics (2021 - 18th March Evening Shift - No. 20)
Let f : R $$ \to $$ R satisfy the equation f(x + y) = f(x) . f(y) for all x, y $$\in$$R and f(x) $$\ne$$ 0 for any x$$\in$$R. If the function f is differentiable at x = 0 and f'(0) = 3, then
$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
Answer
3
Explanation
Given, $$f(x + y) = f(x)\,.\,f(y)\,\forall x,y \in R$$
$$\therefore$$ $$f(x) = {a^x} \Rightarrow f'(x) = {a^x}\,.\,\log (a)$$
Now, $$f'(0) = \log (a) \Rightarrow 3 = \log (a) \Rightarrow a = {e^3}$$
$$\therefore$$ $$f(x) = {({e^3})^x} = {e^{3x}}$$
$$\therefore$$ $$f(h) = {e^{3h}}$$
Now, $$\mathop {\lim }\limits_{h \to 0} \left( {{{f(h) - 1} \over h}} \right) = \mathop {\lim }\limits_{h \to 0} \left( {{{{e^{3h}} - 1} \over h}} \right)$$
$$ = \mathop {\lim }\limits_{h \to 0} \left( {{{{e^{3h}} - 1} \over {3h}} \times 3} \right) = 3 \times 1 = 3$$
Comments (0)
