JEE MAIN - Mathematics (2021 - 18th March Evening Shift - No. 17)
The term independent of x in the expansion of
$${\left[ {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right]^{10}}$$, x $$\ne$$ 1, is equal to ____________.
$${\left[ {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right]^{10}}$$, x $$\ne$$ 1, is equal to ____________.
Answer
210
Explanation
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$
= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$
= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$
= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$
= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$
= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$
$${T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{{1 \over 3}}}} \right)^{(10 - r)}}{\left( {{x^{ - {1 \over 2}}}} \right)^r}$$
For being independent of $$x:{{10 - r} \over 3} - {r \over 2} = 0 \Rightarrow r = 4$$
Term independent of $$x = {}^{10}{C_4} = 210$$
= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$
= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$
= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$
= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$
= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$
$${T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{{1 \over 3}}}} \right)^{(10 - r)}}{\left( {{x^{ - {1 \over 2}}}} \right)^r}$$
For being independent of $$x:{{10 - r} \over 3} - {r \over 2} = 0 \Rightarrow r = 4$$
Term independent of $$x = {}^{10}{C_4} = 210$$
Comments (0)
