JEE MAIN - Mathematics (2021 - 18th March Evening Shift - No. 13)

Let f : R $$-$$ {3} $$ \to $$ R $$-$$ {1} be defined by f(x) = $${{x - 2} \over {x - 3}}$$.

Let g : R $$ \to $$ R be given as g(x) = 2x $$-$$ 3. Then, the sum of all the values of x for which f$$-$$1(x) + g$$-$$1(x) = $${{13} \over 2}$$ is equal to :
3
5
2
7

Explanation

Finding inverse of f(x)

$$y = {{x - 2} \over {x - 3}} \Rightarrow xy - 3y = x - 2 \Rightarrow x(y - 1) = 3y - 2$$

$$ \therefore $$ $${f^{ - 1}}(x) = {{3x - 2} \over {x - 1}}$$

Similarly for $${g^{ - 1}}(x)$$

$$y = 2x - 3 \Rightarrow x = {{y + 3} \over 2} \Rightarrow {g^{ - 1}}(x) = {{x + 3} \over 2}$$

$$ \therefore $$ $${{3x - 2} \over {x - 1}} + {{x + 3} \over 2} = {{13} \over 2}$$

$$ \Rightarrow 6x - 4 + {x^2} + 2x - 3 = 13x - 13$$

$$ \Rightarrow {x^2} - 5x + 6 = 0$$

$$ \Rightarrow (x - 2)(x - 3) = 0$$

$$ \Rightarrow $$ x = 2 or 3

Comments (0)

Advertisement