JEE MAIN - Mathematics (2021 - 18th March Evening Shift - No. 1)
Let y = y(x) be the solution of the differential equation
$${{dy} \over {dx}} = (y + 1)\left( {(y + 1){e^{{x^2}/2}} - x} \right)$$, 0 < x < 2.1, with y(2) = 0. Then the value of $${{dy} \over {dx}}$$ at x = 1 is equal to :
$${{dy} \over {dx}} = (y + 1)\left( {(y + 1){e^{{x^2}/2}} - x} \right)$$, 0 < x < 2.1, with y(2) = 0. Then the value of $${{dy} \over {dx}}$$ at x = 1 is equal to :
$${{{e^{5/2}}} \over {{{(1 + {e^2})}^2}}}$$
$${{5{e^{1/2}}} \over {{{({e^2} + 1)}^2}}}$$
$$ - {{2{e^2}} \over {{{(1 + {e^2})}^2}}}$$
$${{ - {e^{3/2}}} \over {{{({e^2} + 1)}^2}}}$$
Explanation
$${{dy} \over {dx}} = (y + 1)\left( {(y + 1){e^{{{{x^2}} \over 2}}} - x} \right)$$
$$ \Rightarrow {{ - 1} \over {{{(y + 1)}^2}}}{{dy} \over {dx}} - x\left( {{1 \over {y + 1}}} \right) = - {e^{{{{x^2}} \over 2}}}$$
Put, $${1 \over {y + 1}} = z$$
$$ - {1 \over {{{(y + 1)}^2}}}.{{dy} \over {dx}} = {{dz} \over {dx}}$$
$$ \therefore $$ $${{dz} \over {dx}} + z( - x) = - {e^{{{{x^2}} \over 2}}}$$
$$I.F = {e^{\int { - xdx} }} = {e^{{{ - {x^2}} \over 2}}}$$
$$z.\left( {{e^{ - {{{x^2}} \over 2}}}} \right) = - \int {{e^{ - {{{x^2}} \over 2}}}.{e^{{{{x^2}} \over 2}}}dx} = - \int {1.dx = - x + C} $$
$$ \Rightarrow {{{e^{ - {{{x^2}} \over 2}}}} \over {y + 1}} = - x + C$$ .... (1)
Given y = 0 at x = 2 Put in (1)
$${{{e^{ - 2}}} \over {0 + 1}} = - 2 + C$$
$$C = {e^{ - 2}} + 2$$ .... (2)
From (1) and (2)
$$y + 1 = {{{e^{ - {{{x^2}} \over 2}}}} \over {{e^{ - 2}} + 2 - x}}$$
Again, at x = 1
$$ \Rightarrow y + 1 = {{{e^{3/2}}} \over {{e^2} + 1}}$$
$$ \Rightarrow y + 1 = {{{e^{3/2}}} \over {{e^2} + 1}}$$
$$ \therefore $$ $${\left. {{{dy} \over {dx}}} \right|_{x = 1}} = {{{e^{3/2}}} \over {{e^2} + 1}}\left( {{{{e^{3/2}}} \over {{e^2} + 1}} \times {e^{1/2}} - 1} \right)$$
$$ = - {{{e^{3/2}}} \over {{{({e^2} + 1)}^2}}}$$
$$ \Rightarrow {{ - 1} \over {{{(y + 1)}^2}}}{{dy} \over {dx}} - x\left( {{1 \over {y + 1}}} \right) = - {e^{{{{x^2}} \over 2}}}$$
Put, $${1 \over {y + 1}} = z$$
$$ - {1 \over {{{(y + 1)}^2}}}.{{dy} \over {dx}} = {{dz} \over {dx}}$$
$$ \therefore $$ $${{dz} \over {dx}} + z( - x) = - {e^{{{{x^2}} \over 2}}}$$
$$I.F = {e^{\int { - xdx} }} = {e^{{{ - {x^2}} \over 2}}}$$
$$z.\left( {{e^{ - {{{x^2}} \over 2}}}} \right) = - \int {{e^{ - {{{x^2}} \over 2}}}.{e^{{{{x^2}} \over 2}}}dx} = - \int {1.dx = - x + C} $$
$$ \Rightarrow {{{e^{ - {{{x^2}} \over 2}}}} \over {y + 1}} = - x + C$$ .... (1)
Given y = 0 at x = 2 Put in (1)
$${{{e^{ - 2}}} \over {0 + 1}} = - 2 + C$$
$$C = {e^{ - 2}} + 2$$ .... (2)
From (1) and (2)
$$y + 1 = {{{e^{ - {{{x^2}} \over 2}}}} \over {{e^{ - 2}} + 2 - x}}$$
Again, at x = 1
$$ \Rightarrow y + 1 = {{{e^{3/2}}} \over {{e^2} + 1}}$$
$$ \Rightarrow y + 1 = {{{e^{3/2}}} \over {{e^2} + 1}}$$
$$ \therefore $$ $${\left. {{{dy} \over {dx}}} \right|_{x = 1}} = {{{e^{3/2}}} \over {{e^2} + 1}}\left( {{{{e^{3/2}}} \over {{e^2} + 1}} \times {e^{1/2}} - 1} \right)$$
$$ = - {{{e^{3/2}}} \over {{{({e^2} + 1)}^2}}}$$
Comments (0)
