JEE MAIN - Mathematics (2021 - 17th March Morning Shift - No. 18)

If [ . ] represents the greatest integer function, then the value of


$$\left| {\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \right]dx} } \right|$$ is ____________.
Answer
1

Explanation

$$\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \right]} dx$$

$$ = \int\limits_0^1 {[ - \cos x]dx} + \int\limits_1^{\sqrt {{\pi \over 2}} } {[1 - \cos x]dx} $$

= $$\int\limits_0^1 {\left[ { - \cos x} \right]} dx + \int\limits_1^{\sqrt {{\pi \over 2}} } {1dx} + \int\limits_1^{\sqrt {{\pi \over 2}} } {\left[ { - \cos x} \right]} dx$$

When 0 $$ \le $$ x $$ \le $$ 1 then -1 $$ \le $$ -cosx $$ \le $$ 0

$$ \therefore $$ $${\left[ { - \cos x} \right]}$$ = -1

When 1 $$ \le $$ x $$ \le $$ $${\sqrt {{\pi \over 2}} }$$ = 1.24 then -0.33 $$ \le $$ -cosx $$ \le $$ 0

$$ \therefore $$ $${\left[ { - \cos x} \right]}$$ = -1 (Integer value present in the left side of -0.33)

$$ = - \int\limits_0^1 {dx + \int\limits_1^{\sqrt {{\pi \over 2}} } {dx - \int\limits_1^{\sqrt {{\pi \over 2}} } {dx} } } $$

$$ = - (x)_0^1 = - 1$$

$$ \therefore $$ $$\left| {\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \right]dx} } \right|$$ = 1

Comments (0)

Advertisement