JEE MAIN - Mathematics (2021 - 17th March Morning Shift - No. 17)
The maximum value of z in the following equation z = 6xy + y2, where 3x + 4y $$ \le $$ 100 and 4x + 3y $$ \le $$ 75 for x $$ \ge $$ 0 and y $$ \ge $$ 0 is __________.
Answer
904
Explanation
_17th_March_Morning_Shift_en_17_1.png)
3x + 4y $$ \le $$ 100
4x + 3y $$ \le $$ 75
x $$ \ge $$ 0, y $$ \ge $$ 0
Feasible region is shown in the graph
Let maximum value of 6xy + y2 = c
For a solution with feasible region,
6xy + y2 = c and 4x + 3y = 75 must have at least one positive solution.
$${y^2} + 6y\left( {{{75 - 3y} \over 4}} \right) - c = 0 $$
$$\Rightarrow {7 \over 2}{y^2} - {{225} \over 2}y + c = 0$$
$$ \Rightarrow {\left( {{{225} \over 2}} \right)^2} \ge 4.{7 \over 2}.c $$
$$\Rightarrow c \le {{{{225}^2}} \over {56}} \approx 904$$
Comments (0)
