JEE MAIN - Mathematics (2021 - 17th March Morning Shift - No. 16)

Let there be three independent events E1, E2 and E3. The probability that only E1 occurs is $$\alpha$$, only E2 occurs is $$\beta$$ and only E3 occurs is $$\gamma$$. Let 'p' denote the probability of none of events occurs that satisfies the equations
($$\alpha$$ $$-$$ 2$$\beta$$)p = $$\alpha$$$$\beta$$ and ($$\beta$$ $$-$$ 3$$\gamma$$)p = 2$$\beta$$$$\gamma$$. All the given probabilities are assumed to lie in the interval (0, 1).

Then, $$\frac{Probability\ of\ occurrence\ of\ E_{1}}{Probability\ of\ occurrence\ of\ E_{3}} $$ is equal to _____________.
Answer
6

Explanation

Let P(E1) = x, P(E2) = y and P(E3) = z

$$\alpha $$ = P$$\left( {{E_1} \cap {{\overline E }_2} \cap {{\overline E }_3}} \right)$$ = $$P\left( {{E_1}} \right).P\left( {{{\overline E }_2}} \right).P\left( {{{\overline E }_3}} \right)$$

$$ \Rightarrow $$ $$\alpha $$ = x(1 $$-$$ y) (1 $$-$$ z) ......(i)

Similarly

β = (1 – x).y(1 – z) ...(ii)

$$\gamma $$ = (1 – x)(1 – y).z ...(iii)

p = (1 – x)(1 – y)(1 – z) ...(iv)

From (i) and (iv)

$${x \over {1 - x}} = {\alpha \over p}$$

$$ \Rightarrow $$ x = $${\alpha \over {\alpha + p}}$$

From (iii) and (iv)

$${z \over {1 - z}} = {\gamma \over p}$$

$$ \Rightarrow $$ z = $${\gamma \over {\gamma + p}}$$

$$ \therefore $$ $${{P\left( {{E_1}} \right)} \over {P\left( {{E_3}} \right)}} = {x \over z} = {{{\alpha \over {\alpha + p}}} \over {{\gamma \over {\gamma + p}}}}$$ $$ = {{{{\gamma + p} \over \gamma }} \over {{{\alpha + p} \over \alpha }}} = {{1 + {p \over \gamma }} \over {1 + {p \over \alpha }}}$$ ..(v)

Also given,

($$\alpha$$ $$-$$ 2$$\beta$$)p = $$\alpha$$$$\beta$$ $$ \Rightarrow $$ $$\alpha $$p = ($$\alpha $$ + 2p)$$\beta $$ ....(vi)

$$\beta$$ $$-$$ 3$$\gamma$$)p = 2$$\beta$$$$\gamma$$ $$ \Rightarrow $$ 3$$\gamma $$p = (p - 2$$\gamma $$)$$\beta $$ .....(vii)

From (vi) and (vii),

$${\alpha \over {3\gamma }} = {{\alpha + 2p} \over {p - 2\gamma }}$$

$$ \Rightarrow $$ p$$\alpha $$ - 6p$$\gamma $$ = 5$$\gamma $$$$\alpha $$

$$ \Rightarrow $$ $${p \over \gamma } - {{6p} \over \alpha } = 5$$

$$ \Rightarrow $$ $${p \over \gamma } + 1 = 6\left( {{p \over \alpha } + 1} \right)$$ ....(viii)

Now from (v) and (viii),

$${{P\left( {{E_1}} \right)} \over {P\left( {{E_3}} \right)}}$$ = 6

Comments (0)

Advertisement