JEE MAIN - Mathematics (2021 - 16th March Morning Shift - No. 4)

The number of elements in the set {x $$\in$$ R : (|x| $$-$$ 3) |x + 4| = 6} is equal to :
4
2
3
1

Explanation

Case 1 :

x $$ \le $$ $$-$$4

($$-$$x $$-$$ 3)($$-$$x $$-$$ 4) = 6

$$ \Rightarrow $$ (x + 3)(x + 4) = 6

$$ \Rightarrow $$ x2 + 7x + 6 = 0

$$ \Rightarrow $$ x = $$-$$1 or $$-$$6

but x $$ \le $$ $$-$$4

x = $$-$$6

Case 2 :

x $$\in$$ ($$-$$4, 0)

($$-$$x $$-$$ 3)(x + 4) = 6

$$ \Rightarrow $$ $$-$$x2 $$-$$ 7x $$-$$ 12 $$-$$ 6 = 0

$$ \Rightarrow $$ x2 + 7x + 18 = 0

D < 0 No solution

Case 3 :

x $$ \ge $$ 0

(x $$-$$ 3)(x + 4) = 6

$$ \Rightarrow $$ x2 + x $$-$$ 12 $$-$$ 6 = 0

$$ \Rightarrow $$ x2 + x $$-$$ 18 = 0

x = $${{ - 1 \pm \sqrt {1 + 72} } \over 2}$$

$$ \therefore $$ x = $${{\sqrt {73} - 1} \over 2}$$ only

Comments (0)

Advertisement