JEE MAIN - Mathematics (2021 - 16th March Morning Shift - No. 19)
If $$\mathop {\lim }\limits_{x \to 0} {{a{e^x} - b\cos x + c{e^{ - x}}} \over {x\sin x}} = 2$$, then a + b + c is equal to ____________.
Answer
4
Explanation
$$\mathop {\lim }\limits_{x \to 0} {{\left\{ {a\left( {1 + x + {{{x^2}} \over {2!}} + .....} \right) - b\left( {1 - {{{x^2}} \over {2!}} + {{{x^4}} \over {4!}}......} \right) + c\left( {1 - x + {{{x^2}} \over {2!}}......} \right)} \right\}} \over {x\left( {x - {{{x^3}} \over {3!}} + .....} \right)}} = 2$$
$$ \therefore $$ $$\mathop {\lim }\limits_{x \to 0} {{(a - b + c) + x(a - c) + {x^2}\left( {{a \over 2} + {b \over 2} + {c \over 2}} \right) + ....} \over {{x^2}\left( {1 - {{{x^2}} \over 6}....} \right)}} = 2$$
For this limit to exist
a $$-$$ b + c = 0 & a $$-$$ c = 0
& $${a \over 2} + {b \over 2} + {c \over 2} = 2$$
$$ \Rightarrow $$ a + b + c = 4
$$ \therefore $$ $$\mathop {\lim }\limits_{x \to 0} {{(a - b + c) + x(a - c) + {x^2}\left( {{a \over 2} + {b \over 2} + {c \over 2}} \right) + ....} \over {{x^2}\left( {1 - {{{x^2}} \over 6}....} \right)}} = 2$$
For this limit to exist
a $$-$$ b + c = 0 & a $$-$$ c = 0
& $${a \over 2} + {b \over 2} + {c \over 2} = 2$$
$$ \Rightarrow $$ a + b + c = 4
Comments (0)
