JEE MAIN - Mathematics (2021 - 16th March Morning Shift - No. 12)
If for x $$\in$$ $$\left( {0,{\pi \over 2}} \right)$$, log10sinx + log10cosx = $$-$$1 and log10(sinx + cosx) = $${1 \over 2}$$(log10 n $$-$$ 1), n > 0, then the value of n is equal to :
16
9
12
20
Explanation
$$
\begin{aligned}
& \log _{10} \sin x+\log _{10} \cos x=-1, x \in(0, \pi / 2) \\\\
& \log _{10}(\sin x \cos x)=-1 \\\\
& \Rightarrow \sin x \cos x=10^{-1}= {1 \over {10}} \\\\
& \log _{10}(\sin x+\cos x)={1 \over {2}}\left(\log _{10} n-1\right), n>0 \\\\
& 2 \log _{10}(\sin x+\cos x)=\left(\log _{10} n-\log _{10} 10\right) \\\\
& \Rightarrow \log _{10}(\sin x+\cos x)^2=\log _{10}({n \over {10}}) \\\\
& \Rightarrow (\sin x+\cos x)^2={n \over {10}} \\\\
& \Rightarrow \sin ^2 x+\cos ^2 x+2 \sin x \cos x=\frac{n}{10} \\\\
& \Rightarrow 1+2({1 \over {10}})={n \over {10}} \Rightarrow {12 \over {10}}={n \over {10}} \\\\
& \therefore n=12
\end{aligned}
$$
Comments (0)
