JEE MAIN - Mathematics (2020 - 9th January Morning Slot - No. 20)
The number of real roots of the equation,
e4x + e3x – 4e2x + ex + 1 = 0 is :
e4x + e3x – 4e2x + ex + 1 = 0 is :
1
2
3
4
Explanation
e4x + e3x – 4e2x + ex + 1 = 0
Dividing by e2x, we get
e2x + ex - 4 + $${1 \over {{e^x}}}$$ + $${1 \over {{e^{2x}}}}$$ = 0
$$ \Rightarrow $$ $$\left( {{e^{2x}} + {1 \over {{e^{2x}}}}} \right) + \left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0
$$ \Rightarrow $$ $${\left( {{e^x} + {1 \over {{e^x}}}} \right)^2} - 2$$ + $$\left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0
Let $${{e^x} + {1 \over {{e^x}}} = z}$$
(z2 – 2) + (z) – 4 = 0
$$ \Rightarrow $$ z2 + z – 6 = 0
$$ \Rightarrow $$ z = –3, 2
$$ \therefore $$ $${{e^x} + {1 \over {{e^x}}} = 2}$$
$$ \Rightarrow $$ (ex – 1)2 = 0 $$ \Rightarrow $$ x = 0.
$$ \therefore $$ Number of real roots = 1
Dividing by e2x, we get
e2x + ex - 4 + $${1 \over {{e^x}}}$$ + $${1 \over {{e^{2x}}}}$$ = 0
$$ \Rightarrow $$ $$\left( {{e^{2x}} + {1 \over {{e^{2x}}}}} \right) + \left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0
$$ \Rightarrow $$ $${\left( {{e^x} + {1 \over {{e^x}}}} \right)^2} - 2$$ + $$\left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0
Let $${{e^x} + {1 \over {{e^x}}} = z}$$
(z2 – 2) + (z) – 4 = 0
$$ \Rightarrow $$ z2 + z – 6 = 0
$$ \Rightarrow $$ z = –3, 2
$$ \therefore $$ $${{e^x} + {1 \over {{e^x}}} = 2}$$
$$ \Rightarrow $$ (ex – 1)2 = 0 $$ \Rightarrow $$ x = 0.
$$ \therefore $$ Number of real roots = 1
Comments (0)
