JEE MAIN - Mathematics (2020 - 9th January Morning Slot - No. 20)

The number of real roots of the equation,
e4x + e3x – 4e2x + ex + 1 = 0 is :
1
2
3
4

Explanation

e4x + e3x – 4e2x + ex + 1 = 0

Dividing by e2x, we get

e2x + ex - 4 + $${1 \over {{e^x}}}$$ + $${1 \over {{e^{2x}}}}$$ = 0

$$ \Rightarrow $$ $$\left( {{e^{2x}} + {1 \over {{e^{2x}}}}} \right) + \left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0

$$ \Rightarrow $$ $${\left( {{e^x} + {1 \over {{e^x}}}} \right)^2} - 2$$ + $$\left( {{e^x} + {1 \over {{e^x}}}} \right)$$ - 4 = 0

Let $${{e^x} + {1 \over {{e^x}}} = z}$$

(z2 – 2) + (z) – 4 = 0

$$ \Rightarrow $$ z2 + z – 6 = 0

$$ \Rightarrow $$ z = –3, 2

$$ \therefore $$ $${{e^x} + {1 \over {{e^x}}} = 2}$$

$$ \Rightarrow $$ (ex – 1)2 = 0 $$ \Rightarrow $$ x = 0.

$$ \therefore $$ Number of real roots = 1

Comments (0)

Advertisement