JEE MAIN - Mathematics (2020 - 9th January Evening Slot - No. 7)
If $${{dy} \over {dx}} = {{xy} \over {{x^2} + {y^2}}}$$; y(1) = 1; then a value of x
satisfying y(x) = e is :
$$\sqrt 2 e$$
$${1 \over 2}\sqrt 3 e$$
$${e \over {\sqrt 2 }}$$
$$\sqrt 3 e$$
Explanation
$${{dy} \over {dx}} = {{xy} \over {{x^2} + {y^2}}}$$
Let y = vx
$$ \therefore $$ $${{dy} \over {dx}}$$ = v + x.$${{dv} \over {dx}}$$
$$ \Rightarrow $$ v + x.$${{dv} \over {dx}}$$ = $${{x\left( {vx} \right)} \over {{x^2} + {v^2}{x^2}}}$$ = $${v \over {1 + {v^2}}}$$
$$ \Rightarrow $$ x.$${{dv} \over {dx}}$$ = $${v \over {1 + {v^2}}}$$ - v = $${{v - v - {v^3}} \over {1 + {v^2}}}$$ = $$ - {{{v^3}} \over {1 + {v^2}}}$$
$$ \Rightarrow $$ $$\int {{{1 + {v^2}} \over {{v^3}}}} dv = - \int {{{dx} \over x}} $$
$$ \Rightarrow $$ $$ - {1 \over {2{v^2}}} + \log v$$ = $$ - \log x + C$$
$$ \Rightarrow $$ $$ - {1 \over 2}{{{x^2}} \over {{y^2}}} + \log \left( {{y \over x}} \right)$$ = $$ - \log x + C$$ ......(1)
putting x = 1, y = 1 we get
$$ \Rightarrow $$ C = $$ - {1 \over 2}$$
From eq. (1)
$$ - {1 \over 2}{{{x^2}} \over {{y^2}}} + \log \left( {{y \over x}} \right)$$ = $$ - \log x - {1 \over 2}$$
Put y = e
$$ - {1 \over 2}{{{x^2}} \over {{e^2}}} + \log \left( {{e \over x}} \right)$$ = $$ - \log x - {1 \over 2}$$
$$ \Rightarrow $$ x2 = 3e2
$$ \Rightarrow $$ x = $$ \pm $$3$$\sqrt e $$
Let y = vx
$$ \therefore $$ $${{dy} \over {dx}}$$ = v + x.$${{dv} \over {dx}}$$
$$ \Rightarrow $$ v + x.$${{dv} \over {dx}}$$ = $${{x\left( {vx} \right)} \over {{x^2} + {v^2}{x^2}}}$$ = $${v \over {1 + {v^2}}}$$
$$ \Rightarrow $$ x.$${{dv} \over {dx}}$$ = $${v \over {1 + {v^2}}}$$ - v = $${{v - v - {v^3}} \over {1 + {v^2}}}$$ = $$ - {{{v^3}} \over {1 + {v^2}}}$$
$$ \Rightarrow $$ $$\int {{{1 + {v^2}} \over {{v^3}}}} dv = - \int {{{dx} \over x}} $$
$$ \Rightarrow $$ $$ - {1 \over {2{v^2}}} + \log v$$ = $$ - \log x + C$$
$$ \Rightarrow $$ $$ - {1 \over 2}{{{x^2}} \over {{y^2}}} + \log \left( {{y \over x}} \right)$$ = $$ - \log x + C$$ ......(1)
putting x = 1, y = 1 we get
$$ \Rightarrow $$ C = $$ - {1 \over 2}$$
From eq. (1)
$$ - {1 \over 2}{{{x^2}} \over {{y^2}}} + \log \left( {{y \over x}} \right)$$ = $$ - \log x - {1 \over 2}$$
Put y = e
$$ - {1 \over 2}{{{x^2}} \over {{e^2}}} + \log \left( {{e \over x}} \right)$$ = $$ - \log x - {1 \over 2}$$
$$ \Rightarrow $$ x2 = 3e2
$$ \Rightarrow $$ x = $$ \pm $$3$$\sqrt e $$
Comments (0)
