JEE MAIN - Mathematics (2020 - 9th January Evening Slot - No. 17)

Let [t] denote the greatest integer $$ \le $$ t and $$\mathop {\lim }\limits_{x \to 0} x\left[ {{4 \over x}} \right] = A$$.
Then the function, f(x) = [x2]sin($$\pi $$x) is discontinuous, when x is equal to :
$$\sqrt {A + 1} $$
$$\sqrt {A + 5} $$
$$\sqrt {A + 21} $$
$$\sqrt {A} $$

Explanation

A = $$\mathop {\lim }\limits_{x \to 0} x\left[ {{4 \over x}} \right]$$

= $$\mathop {\lim }\limits_{x \to 0} x\left( {{4 \over x} - \left\{ {{4 \over x}} \right\}} \right)$$

= $$\mathop {\lim }\limits_{x \to 0} \left( {4 - \left\{ {{4 \over x}} \right\}} \right)$$

= 4

Now, when x = $$\sqrt {A + 1} $$ = $$\sqrt 5 $$, f(x) = [x2]sin($$\pi $$x) is discontinuous at this non integer point.

But at x = 2, 3 and 5, f(x) is continuous.

Comments (0)

Advertisement